03 دی 1403
logo

مرکز تحقیقات سلول درمانی و پزشکی بازساختی

دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران

لیست مقالات علمی

  • تاریخ انتشار : 1403/02/25 - 13:22
  • تعداد بازدید : 84
  • زمان مطالعه : 1 دقیقه

Epithelial cells/progenitor cells in developing human lower respiratory tract

Epithelial cells/progenitor cells in developing human lower respiratory tract: Characterization and transplantation to rat model of pulmonary injury

Introduction: For cell-based therapies of lung injury, several cell sources have been extensively studied. However, the potential of human fetal respiratory cells has not been systematically explored for this purpose. Here, we hypothesize that these cells could be one of the top sources and hence, we extensively updated the definition of their phenotype.

Epithelial cells/progenitor cells in developing human lower respiratory tract {faces}

Abstract

Introduction: For cell-based therapies of lung injury, several cell sources have been extensively studied. However, the potential of human fetal respiratory cells has not been systematically explored for this purpose. Here, we hypothesize that these cells could be one of the top sources and hence, we extensively updated the definition of their phenotype.

Methods: Human fetal lower respiratory tissues from pseudoglandular and canalicular stages and their isolated epithelial cells were evaluated by immunostaining, electron microscopy, flow cytometry, organoid assay, and gene expression studies. The regenerative potential of the isolated cells has been evaluated in a rat model of bleomycin-induced pulmonary injury by tracheal instillation on days 0 and 14 after injury and harvest of the lungs on day 28.

Results: We determined the relative and temporal, and spatial pattern of expression of markers of basal (KRT5, KRT14, TRP63), non-basal (AQP3 and pro-SFTPC), and early progenitor (NKX2.1, SOX2, SOX9) cells. Also, we showed the potential of respiratory-derived cells to contribute to in vitro formation of alveolar and airway-like structures in organoids. Cell therapy decreased fibrosis formation in rat lungs and improved the alveolar structures. It also upregulated the expression of IL-10 (up to 17.22 folds) and surfactant protein C (up to 2.71 folds) and downregulated the expression of TGF-β (up to 5.89 folds) and AQP5 (up to 3.28 folds).

Conclusion: We provide substantial evidence that human fetal respiratory tract cells can improve the regenerative process after lung injury. Also, our extensive characterization provides an updated phenotypic profile of these cells.

  • Article_DOI : 10.34172/bi.2023.26456
  • نویسندگان : babak arjmand, hamid reza aghayan,fatemeh ganji ,marzieh ebrahimi,ramin heshmat,nushin karkuki osguei , ali samadikuchaksaraei
  • گروه خبر : مقالات انگلیسی
  • کد خبر : 265729
کلمات کلیدی
مریم افشاری
تهیه کننده:

مریم افشاری

متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه